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Abstract 

Purpose – A spherical element subdivision method for the numerical evaluation of nearly singular 

integrals in three-dimensional (3D) boundary element method (BEM) is presented in this paper.  

Design/methodology/approach – In this method, the source point is firstly projected to the 

tangent plane of the element. Then two cases are considered: the projection point is inside or 

outside the element. In both cases, the element is subdivided into a number of patches using a 

sequence of spheres with decreasing radius.  

Findings – With the proposed method, the patches obtained are automatically refined as they 

approach the projection point and each patch of the integration element is “good” in shape and 

size for standard Gaussian quadrature. Therefore, all kinds of nearly singular boundary integrals 

on elements of any shape and size with arbitrary source point location related to the element can 

be evaluated accurately and efficiently.  

Originality/value – Numerical examples for planar and slender elements with various relative 

location of the source point are presented. The results demonstrate that our method has much 

better accuracy, efficiency and stability than conventional methods. 
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1. Introduction 

Accurate and efficient evaluation of nearly singular integrals has long been an issue of major 

concern in BEM [1-6]. The nearly singular integrals arise when the source point is close to but not 
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on the element of integration. These happen in many BEM analyses for engineering problems, 

such as the analysis of thin or shell-like structures [7-9], the contact problems [10], the sensitivity 

problems [11] and the displacement around open crack tips [12]. Theoretically, the nearly singular 

integrals are actually regular since the value of their integrants is finite. However, they are even 

more difficult to evaluate using the traditional Gaussian quadrature rules. This is because the value 

of the integrand for varies dramatically as the source point approaches to the element. 

Various methods have been proposed to cope with nearly singular integrals, such as analytical 

and semi-analytical method [13, 14], exponential transformation [15-18], distance transformation 

[19-21] and sinh transformation [22-25]. As analytical integrals do not exist for a general curved 

element, the analytical and semi-analytical methods are mainly used for the constant or linear 

element. As for the above non-linear transformation method, the numerical results are sensitive to 

the location of the projection point of the source point. 

Element subdivision [26, 27] is one of the most widely used methods for evaluating nearly 

singular integral. Zhang et al. have developed an adaptive element subdivision method using 

Quad-tree subdivision [5, 28]. In this method, the quadrilateral element is divided into four equal 

sub-elements which are also called patches. It is performed in the local coordinate system of the 

element rather than in the physical coordinate system. Obviously, it may produce patches in “bad” 

shapes in the case that the element is distorted or the element is irregular in shape. As patches in 

“good” shape in the parametric space may become “bad” when they are mapped into the physical 

coordinate system. (The word “good” here means that the area of the patch is as large as possible 

under the condition that the fundamental solution within the patch can be accurately interpolated 

by low order polynomials.) Besides, this method is not suitable for triangle elements. So far, a 

general and accurate method for nearly singular integrals is still unavailable. 

In this paper, a spherical element subdivision method for the numerical evaluation of nearly 

singular integrals in 3D BEM is proposed. In this method, an element is subdivided into a number 

of patches (sub-element) by cutting it using a sequence of spheres with decreasing radius. The 

patches obtained are automatically refined as they approach the projection point. As a result, each 

patch is “good” in shape and size for standard Gaussian quadrature, and hence high accuracy can 

be achieved by a small number of Gaussian sample points. Since the spherical element subdivision 

method is performed in the physical coordinate system, it is a general algorithm for any kind of 

elements. 

This paper is organized as follows. Detailed description of the spherical element subdivision 

method is presented in Section 2. Numerical examples are given in Section 3. The paper ends with 

conclusions in Section 4. 

2. Spherical element subdivision method 

In this section, the algorithm of the spherical element subdivision method is described in 

detail. Firstly, the source point is projected to the tangent plane of the element. Then two cases are 
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considered: the projection point is inside or outside the element. Fig. 1 shows the j-th step of the 

element subdivision. Fig. 1(a) and Fig. 1(b) are axonometric view and top view of the element 

subdivision, respectively. The meanings of the symbols in these figures are as follows: 

P : the source point; 
P : the projection point of P; 

j
iV : the i-th vertex in the j-th step; 

j
iE : the i-th edge in the j-th step; 
j

iR : the line segment connecting P and j
iV ; 

j
ikEP : the k-th intersection of j

iE with the j-th sphere, k=1, 2; 
j

iRP : the projection point of intersection of j
iR with the j-th sphere; 

j
iL : distance between P and j

iV ; 
j

iD : distance between P and j
iE ; 

minL = the shortest distance between the source point and the element to be subdivided; 

maxL = max{ , }j j
i iL D . 

 

 

Figure 1. Element subdivision at the j-th step. 

(a) Axonometric view of the element subdivision. (b) Top view of the element subdivision. 

2.1 The case that the projection point P’ is inside the element 
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In this case, the shortest distance between the source point and the element minL  equals the 

distance from P to P . In each step, a sphere with its center at P is constructed, and its radius is 

defined as: 

                                    max / 2 j
jr L                              (1) 

As the sphere is constructed, it interacts with the edges of the element and the line segment 

connecting P and j
iV  as shown in Fig. 1(a). Then the intersections are projected to the element and 

j
iRP  and j

ikEP  are obtained as shown in Fig. 1(b). These intersections are then connected in 

order. The element is subdivided into a certain number of patches as shown in Fig. 2. Polygon 

2
jV - 21

jEP - 3
jRP - 0

jRP - 1
jRP - 11

jEP  is obtained and will be subdivided in the next step. At the same 

time, the intersections 2
jV , 21

jEP , 3
jRP , 0

jRP , 1
jRP , 11

jEP  take the place of the original vertexes to be 

the new vertexes for the next step. Edges will also be renewed. The algorithm is similar to the 

advancing front method which needs to update vertexes and edges in every step [29]. By repeating 

this process, a certain number of new patches will be obtained after each step. In the last step, the 

intersections and the projection of the source point will be connected as illustrated in Fig. 3(c). Fig. 

3 shows the whole subdivision steps for a simple example. 

 

Figure 2. Connections and intersections at the j-th step. 

 

Figure 3. Subdivisions at various steps. 

 (a) The first step; (b) The second step; (c) The last step. 

2.2 The case that the projection point P’ is outside the element 
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In this case, P  is outside the element, minL is computed by the following formula: 

Lmin =
2 2
1 2( )L L                              (2) 

where L1 is the distance between the source point P and its projection P ; L2 is the shortest 

distance from P  to the element as shown in Fig. 4. 

 

Figure 4. Nearest distance Lmin in case that projection point is outside the element. 

It can be seen from Fig. 5 that the intersections 3
jRP  and 2

jRP  are outside the element. If 

the intersections and vertexes are connected directly, the patches located outside the element will 

be obtained. To avoid this situation, 3
jRP  and 2

jRP  will be moved to 21
jEP  and 22

jEP , 

respectively. Then the intersections and vertexes are connected using the former algorithm. After 

this operation, the patches are obtained as shown in Fig. 6. 

 

Figure 5. The case that the projection of the source point is outside the element. 

 

Figure 6. The patches obtained with the modified algorithm. 
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The main algorithm for creating patches is described by the following flow chart as shown in 

Fig. 7. When the radius of the j-th sphere min minjr L , the element subdivision will be stopped.  

 

Figure 7. Flow chart of subdivision algorithm. 

2.3 The optimization algorithm 

From Fig. 3 it can be seen that total number of patches is very large, which will increase 

computational cost. At the same time, the shape of some patches is “bad”, and it is unfavorable for 

accuracy and efficiency of the result. Thus the merging operation is proposed to deal with this 

situation. 

“Bad” patch may occur in the following three cases. First, the distance between j
ikEP  and 

the vertex is smaller than an expected value d1. Second, the distance between j
iRP  and the vertex 

is smaller than an expected value d2. Third, the distance between j
iRP  and j

ikEP  is smaller than 

an expected value d3. In any one of the three cases, one point will be merged into the other.  

d1、d2、d3  are defined as follows: 

1 1( , )j j
i id edgeFactor d V V    

2 jd radFactor r   

3 jd radFactor r   
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where edgeFactor=0.1 and radFactor=0.1. After the merging operation, new patches are obtained 

as shown in Fig. 8. It can be seen that the number of patches is reduced and the shape of patches is 

improved obviously compared with that in Fig. 3.  

 

Figure 8. Element subdivision after merging operation. 

(a) The first step; (b) The second step; (c) The last step. 

With the detailed description above, it can be clearly seen that the shape of the patches 

obtained with our method is “good” due to the properties of sphere and the merging operation. 

Gaussian sample points are set denser around the projection point to get an accurate enough result. 

Away from the projection point, Gaussian sample points are sparsely distributed, which are much 

fewer but enough to grantee an accurate result, thus a large number of unnecessary Gaussian 

sample points are avoided. In the whole process, the number of patches and their size are 

determined adaptively by the location of source point. In a word, with the spherical element 

subdivision method, the nearly singular integrals can be solved with higher accuracy and less 

computational cost.  

3. Numerical examples 

To evaluate the effectiveness and accuracy of the proposed method, in this section, several 

comparisons are made between our method and other methods, such as distance transformation 

technique [19-21] and sinh transformation method [22-25]. For the purpose of error estimation, 

relative error is defined as follows: 

Relative Error= n e

e

I I

I


                                (3) 

where In and Ie are the numerical solution and exact solution of the integral, respectively. 

The following integral is considered. 

                         
1

4 p
I Nd

r
                                    (4) 

where N is shape function, r stands for the distance between the source point and field point, and p 

represents the order of singularity (p = 1, 2 and 3). 

In all numerical examples, the number of Gaussian sample points and the relative errors of 

different methods are listed. ‘A’ represents distance transformation technique. ‘B’ and ‘C’ are sinh 
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transformation method and sinh plus sigmoidal transformation method, respectively. The 

serendipity patch [30] is used in the proposed method. The patch obtained by our method becomes 

arc-shaped according to the location of the source point. The number of Gaussian points m is 

determined by [4, 31, 32] 

                  
3

4
2 2 8

ln(e/ 2) /10 ( ) 1
3 5 3 j

L
m p

r

 
    

  
                        (5) 

where e denotes the error tolerance. L is the length of the patch in integral direction. And rj is the 

sphere radius defined in Eq. (1).  

3.1 Example of planar element 

In the first example, the numerical results by spherical element subdivision method and other 

methods for planar quadrilateral element are presented. The vertex coordinates of planar 

quadrilateral element are (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0) in the physical coordinate system. 

The source points are uniformly collocated along two lines as shown in Fig. 9 with h1 = 0.01, h2 = 

0.31. The source points are numbered with Arabic numerals 0~8 (from top to bottom) and 9~18 

(from left to right). 

The patches obtained by our method for different locations of the source point are shown in 

Fig. 10 and Fig. 11. It can be seen that the patches are in “good” shape and size. The number of the 

Gaussian points and the relative errors of different methods are listed in Table 1. 

     

(a)                                               (b) 

Figure 9. The planar element and the locations of the source point. 

(a) Top view of the element and the source points. (b) Front view of the element and the source points. 
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Figure 10. Subdivisions for locations of source point moving vertically. 

     

   

Figure 11. Subdivisions for locations of source point moving horizontally. 

Table 1 Numerical results on a planar element. 

Number of Gaussian points  Relative error 
Source 
point A B C 

Our 
method 

A B C Our method 

0 16 16 32 20 8.2532e-2 1.0558e-3 6.6394e-2 6.5731e-4 
1 36 36 32 48 5.0534e-2 5.3359e-2 7.1744e-2 1.3996e-4 
2 36 36 32 48 5.0012e-2 5.2459e-2 7.7893e-2 1.3638e-4 
3 36 36 32 48 4.9347e-2 5.1067e-2 8.5146e-2 1.3607e-4 
4 64 64 72 51 2.5306e-2 2.6415e-2 2.5382e-3 2.4964e-4 
5 64 64 72 60 2.3976e-2 2.5566e-2 6.7412e-4 3.2417e-4 
6 64 64 72 67 2.2432e-2 2.4541e-2 2.1559e-3 3.5848e-3 
7 100 100 128 103 9.6748e-3 9.9299e-3 2.9758e-3 8.4397e-5 
8 144 144 128 156 3.8426e-3 3.8947e-3 3.5677e-3 9.5223e-6 
9 128 128 144 138 1.0865e-6 9.5217e-6 6.6043e-4 8.1271e-6 

10 400 400 392 379 2.6568e-4 2.6585e-4 3.4633e-5 2.7282e-6 
11 400 400 392 429 3.2202e-5 3.2284e-5 2.0068e-5 1.1443e-5 
12 484 484 512 456 7.5196e-7 7.9038e-7 1.4281e-6 9.8228e-6 
13 484 484 512 493 9.9456e-9 1.5887e-8 6.9512e-7 3.6412e-8 
14 576 576 648 588 3.0531e-7 4.9294e-9 9.9510e-9 3.7380e-6 
15 484 484 512 504 8.4589e-9 3.5748e-9 2.9291e-7 6.3274e-6 
16 484 484 512 485 4.6799e-8 2.2363e-9 5.5429e-7 3.4578e-6 
17 484 484 512 468 1.4887e-7 5.3185e-8 5.0080e-7 1.1082e-5 
18 300 300 294 278 2.8474e-7 2.6004e-9 4.0155e-6 7.8094e-6 

No. 4 No. 0 No. 8 

No. 11 No. 9 No. 13 

No. 15 No. 17 No. 18 
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Table 1 shows that the accuracy obtained by the distance transformation method and sinh 

transformation method is higher than that by our method in some cases, but the accuracy obtained 

by our method is stable and acceptable for any locations of the source point. 

3.2 Example of slender element 

In this example, the spherical element subdivision method and other methods are performed 

on the slender element. The vertex coordinates of the slender element are (0, 0, 0), (10, 0, 0), (10, 

1, 0), (0, 1, 0) in the physical coordinate system. The source points are uniformly collocated along 

two lines as shown in Fig. 12 with h1 = 0.01, h2 = 1.59. The source points are numbered with 

Arabic numerals 0~9 (from top to bottom) and 10~20 (from left to right).  

The patches obtained by our method for different location of source points are shown in Fig. 

13 and Fig. 14. It can be seen that the patches are in “good” shape and size. The number of the 

Gaussian points and the relative errors of different methods are listed in Table 2. 

  

(a) 

 

(b) 

Figure 12. The slender element and the locations of the source point. 

(a) Top view of the element and the source points. (b) Front view of the element and the source points. 

 

 

 

No. 0 

No. 2 

No. 4 
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Figure 13. Subdivisions for locations of source point moving vertically. 
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Figure 14. Subdivisions for locations of source point moving horizontally. 

Table 2 Numerical results on a slender element. 

Number of Gaussian points  Relative error 
Source 
point A B C 

Our 
method 

A B C Our method 

0 36 36 32 31 4.4066e-2 4.0780e-2 2.1717e-2 3.1182e-4 
1 36 36 32 33 4.3592e-2 3.9798e-2 2.5394e-2 4.6344e-4 
2 36 36 32 36 4.2985e-2 3.8641e-2 2.9745e-2 3.2901e-4 
3 36 36 32 36 4.2167e-2 3.7270e-2 3.5082e-2 5.2164e-4 
4 36 36 32 45 4.1021e-2 3.5622e-2 4.1879e-2 2.0326e-5 
5 64 64 32 49 1.5313e-2 1.5096e-2 5.0868e-2 1.4442e-5 
6 64 64 72 66 1.6111e-2 1.5679e-2 9.5684e-3 2.6152e-3 
7 100 100 72 96 2.9382e-3 3.0566e-3 8.5817e-3 6.3826e-5 
8 144 144 128 129 2.2749e-3 2.1928e-3 4.8821e-3 4.7677e-5 
9 144 144 128 154 2.9570e-3 2.8866e-3 7.8248e-3 3.4229e-5 

10 162 162 196 175 8.0740e-6 6.2623e-7 4.6241e-5 6.6550e-6 
11 484 484 512 506 5.1797e-3 5.1809e-3 1.1366e-2 3.4709e-6 
12 484 484 512 511 1.0518e-2 1.0519e-2 1.4348e-2 9.6752e-6 
13 484 484 512 522 1.1748e-2 1.1750e-2 7.2528e-3 8.9188e-6 
14 576 576 648 586 9.4047e-4 9.4064e-4 9.0105e-3 4.2710e-6 
15 576 576 648 584 1.6694e-2 1.6694e-2 3.6332e-2 1.3552e-6 
16 576 576 648 586 8.8486e-3 8.8484e-3 2.6178e-3 6.5219e-6 
17 576 576 512 542 6.5545e-3 6.5547e-3 2.7797e-2 6.7369e-6 
18 676 676 648 628 7.6170e-4 7.6179e-4 7.0510e-4 6.9944e-6 
19 576 576 648 584 3.2067e-4 3.2078e-4 7.1817e-4 7.9095e-6 
20 363 363 294 336 1.9924e-6 1.9767e-6 2.0768e-6 9.0218e-7 

From Table 2, it can be seen that with equivalent number of Gaussian points, our method 

achieves much better the accuracy than that other methods. Again, the accuracy obtained by our 

method for all locations of the source point is stable. Therefore, our method is more suitable for 

evaluating nearly singular integrals on slender elements. 

4. Conclusions  

A general element spherical subdivision method has been presented in this paper for 

evaluating nearly singular integrals in 3D BEM. With the proposed method, the element is 

subdivided by a sequence of spheres centered at the source point, and the obtained patches are 

automatically refined as they approach the projection of the source point. Therefore, each patch is 

ensured to be “good” in shape and size, no matter where the source point locates. In addition, the 

spherical element subdivision method is performed in the physical coordinate system, thus it is a 

general algorithm for any kind of boundary element. Through the numerical examples, it can be 

seen that the accuracy obtained by our method is stable and acceptable for any locations of the 

source point. With equivalent number of Gaussian points, our method achieves much better the 

accuracy than that other methods on slender element. We can conclude that the proposed method 

is more suitable for evaluating nearly singular integrals. Extension of our method for high order 

elements is ongoing. 

 

References 



 

 13 

[1] Brebbia CA, Telles JCF, and Wrobel LC. Boundary element techniques: theory and 

applications in engineering. Vol. 5. Berlin: Springer-Verlag; 1984. 

[2] Han PS. A Galerkin boundary element formulation with moving singularities. Engineering 

Computations 1984; 1; 232-236. 

[3] Provatidis C. A boundary element method for axisymmetric potential problems with 

non-axisymmetric boundary conditions using fast fourier transform. Engineering 

Computations 1998; 15; 428-449. 

[4] Gao XW, Davies TG. Adaptive integration in elasto-plastic boundary element analysis. 

Journal of the Chinese Institute of Engineers 2000; 23; 349-356. 

[5] Zhang JM, Qin XY, Han X, Li GY. A boundary face method for potential problems in three 

dimensions. International Journal for Numerical Methods in Engineering 2009; 80; 320-337. 

[6] Chen CH, Chen CS, Pan E, Tseng HC, Yu PS. Boundary element analysis of mixed-mode 

stress intensity factors in an anisotropic cuboid with an inclined surface crack. Engineering 

Computations 2009; 26; 1056-1073. 

[7] Liu YJ. Analysis of shell-like structures by the boundary element method based on 3-D 

elasticity: formulation and verification. International Journal for Numerical Methods in 

Engineering 1998; 41; 541-558. 

[8] Liu YJ, Fan H. Analysis of the thin piezoelectric solids by the boundary element method. 

Computer Methods in Applied Mechanics and Engineering 2002; 191; 2297–2315. 

[9] Zhang YM, Gu Y, Chen JT. Boundary element analysis of 2D thin walled structures with 

high-order geometry elements using transformation. Engineering Analysis with Boundary 

Elements 2011; 35; 581-586. 

[10] Aliabadi MH, Martin D. Boundary element hyper-singular formulation for elastoplastic 

contact problems. International Journal for Numerical Methods in Engineering 2000; 48; 

995-1014. 

[11] Zhang D, Rizzo FJ, Rudolphi TJ. Stress intensity sensitivities via hypersingular boundary 

integral equations. Computational Mechanics 1999; 23; 389-396. 

[12] Dirgantara T, Aliabadi MH. Crack growth analysis of plates loaded by bending and tension 

using dual boundary element method. International Journal of Fracture 2000; 105; 27-47. 

[13] Niu ZR, Wendland WL, Wang XX, Zhou HL. A semi-analytic algorithm for the evaluation 

of the nearly singular integrals in three-dimensional boundary element methods. Computer 

Methods in Applied Mechanics and Engineering 2005; 31; 949–964. 

[14] Zhou HL, Niu ZR, Cheng CZ, Guan ZW. Analytical integral algorithm applied to boundary 

layer effect and thin body effect in BEM for anisotropic potential problems. Computers & 

structures 2008; 86; 1656–1671. 

[15] Xie GZ, Zhang JM, Qin XY, Li GY. New variable transformations for evaluating nearly 

singular integrals in 2D boundary element method. Engineering Analysis with Boundary 

Elements 2011; 35: 811-817. 

[16] Xie GZ, Zhang JM, Huang C, Lu CJ, Li GY. Calculation of Nearly Singular Boundary 

Element Integrals in Thin Structures Using an Improved Exponential Transformation. 

Computer Modeling in Engineering & Sciences 2013; 94(2): 139-157.  

[17] Xie GZ, Zhou FL, Zhang JM, Zheng XS, Huang C. New variable transformations for 

evaluating nearly singular integrals in 3D boundary element method. Engineering Analysis 

with Boundary Elements 2013; 37: 1169-1178. 



 

 14 

[18] Xie GZ, Zhang JM, Dong YQ, Huang C, Li GY. An improved exponential transformation 

for nearly singular boundary element integrals in elasticity problems. International Journal 

of Solids and Structures 2014; 51: 1322-1329. 

[19] Ma H, Kamiya N. Distance transformation for the numerical evaluation of near singular 

boundary integrals with various kernels in boundary element method. Engineering Analysis 

with Boundary Elements 2002; 26; 329–339. 

[20] Ma H, Kamiya N. A general algorithm for the numerical evaluation of nearly singular 

boundary integrals of various orders for two- and three-dimensional elasticity. 

Computational mechanics 2002; 29; 277–288. 

[21] Qin XY, Zhang JM, Xie GZ, Zhou FL, Li GY. A general algorithm for the numerical 

evaluation of nearly singular integrals on 3D boundary element.  Journal of Computational 

and Applied Mathematics 2011; 235; 4174-4186. 

[22] Johnston BM, Johnston PR, Elliott D. A sinh transformation for evaluating two-dimensional 

nearly singular boundary element integrals. International journal for numerical methods in 

engineering 2007; 69(7); 1460-1479. 

[23] Johnston PR, Elliott D. A sinh transformation for evaluating nearly singular boundary 

element integrals. International journal for numerical methods in engineering 2005; 62(4); 

564-578. 

[24] Johnston BM, Johnston PR, Elliott D. A new method for the numerical evaluation of nearly 

singular integrals on triangular elements in the 3D boundary element method. Journal of 

Computational and Applied Mathematics 2013; 245; 148-161. 

[25] Gu Y, Chen W, Zhang C. The sinh transformation for evaluating nearly singular boundary 

element integrals over high-order geometry elements. Engineering Analysis with Boundary 

Elements 2013; 37(2); 301-308. 

[26] Gao XW. An effective method for numerical evaluation of general 2D and 3D high order 

singular boundary integrals. Computer Methods in Applied Mechanics & Engineering 2010; 

199; 2856-2864. 

[27] Gao XW, Zhang JB, Zheng BJ, Zhang C. Element-subdivision method for evaluation of 

singular integrals over narrow strip boundary elements of super thin and slender structures. 

Engineering Analysis with Boundary Elements 2016; 66; 145-154. 

[28] Tanaka M, Zhang JM, Matsumoto T. Boundary-type meshless solution of potential problems: 

comparison between singular and regular formulations in hybrid BNM. Transactions of 

JASCOME. Journal of Boundary Element Methods 2003; 20; 21-26. 

[29] Wu B, Wang S. Automatic triangulation over three-dimensional parametric surfaces based 

on advancing front method. Finite Elements in Analysis and Design 2005; 41(9); 892-910. 

[30] Zhong YD, Zhang JM, Dong YQ, Li Y, Lin WC and Tang JY. A serendipity triangular patch 

for evaluating weakly singular boundary integrals. Engineering Analysis with Boundary 

Elements 2016; 69; 86-92. 

[31] Bu S, Davies TG. Effective evaluation of non-singular integrals in 3D BEM. Advances in 

Engineering Software 1995; 23(2); 121-128. 

[32] Lachat JC, Watson JO. Effective numerical treatment of boundary integral equations: A 

formulation for three-dimensional elastostatics. International Journal for Numerical Methods 

in Engineering 1976; 10(5); 991-1005. 

 


	A spherical element subdivision method for the numerical evaluation of nearly singular integrals in 3D BEM 



